کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6871614 | 1440187 | 2018 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Some properties and applications of odd-colorable r-hypergraphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let râ¥2 and r be even. An r-hypergraph G on n vertices is called odd-colorable if there exists a map Ï:[n]â[r] such that for any edge {j1,j2,â¦,jr} of G, we have Ï(j1)+Ï(j2)+â
â¯â
+Ï(jr)â¡râ2(modr). In this paper, we first determine that, if r=2q(2t+1) and nâ¥2q(2qâ1)r, then the maximum chromatic number in the class of the odd-colorable r-hypergraphs on n vertices is 2q, which answers a question raised by V. Nikiforov recently in Nikiforov (2017). We also study some applications of the spectral symmetry of the odd-colorable r-hypergraphs given in the same paper by V. Nikiforov. We show that the Laplacian spectrum Spec(L(G)) and the signless Laplacian spectrum Spec(Q(G)) of an r-hypergraph G are equal if and only if r is even and G is odd-colorable. As an application of this result, we give an affirmative answer for the remaining unsolved case rââ¡0(mod4) of a question raised in Shao et al. (2015) about whether Spec(L(G))=Spec(Q(G)) implies that L(G) and Q(G) have the same H-spectrum.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 236, 19 February 2018, Pages 446-452
Journal: Discrete Applied Mathematics - Volume 236, 19 February 2018, Pages 446-452
نویسندگان
Xiying Yuan, Liqun Qi, Jiayu Shao, Chen Ouyang,