کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6871644 | 1440188 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Short signed circuit covers of signed graphs
ترجمه فارسی عنوان
مدارهای مدارک امضا شده کوتاه از نمودار های امضا شده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نمودار امضا شده مدار امضا شده، پوشش مدار، پوشش حداقل پوشش،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A signed graph G is a graph associated with a mapping Ï: E(G)â{+1,â1}. An edge eâE(G) is positive if Ï(e)=1 and negative if Ï(e)=â1. A circuit in G is balanced if it contains an even number of negative edges, and unbalanced otherwise. A barbell consists of two unbalanced circuits joined by a path. A signed circuit of G is either a balanced circuit or a barbell. A signed graph is coverable if each edge is contained in some signed circuit. An oriented signed graph (bidirected graph) has a nowhere-zero integer flow if and only if it is coverable. A signed circuit cover of G is a collection F of signed circuits in G such that each edge eâE(G) is contained in at least one signed circuit of F; The length of F is the sum of the lengths of the signed circuits in it. The minimum length of a signed circuit cover of G is denoted by scc(G). The first nontrivial bound on scc(G) was established by MáÄajová et al., who proved that scc(G)â¤11|E(G)| for every coverable signed graph G, which was recently improved by Cheng et al. to scc(G)â¤143|E(G)|. In this paper, we prove that scc(G)â¤256|E(G)| for every coverable signed graph G.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 235, 30 January 2018, Pages 51-58
Journal: Discrete Applied Mathematics - Volume 235, 30 January 2018, Pages 51-58
نویسندگان
Jing Chen, Genghua Fan,