کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6872135 | 681622 | 2014 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A constant factor approximation algorithm for boxicity of circular arc graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs-intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Ω(n). We give a (2+1k)-factor (resp.(2+âlognâk)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where kâ¥1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn+n2) in both these cases, and in O(mn+kn2)=O(n3) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 178, 11 December 2014, Pages 1-18
Journal: Discrete Applied Mathematics - Volume 178, 11 December 2014, Pages 1-18
نویسندگان
Abhijin Adiga, Jasine Babu, L. Sunil Chandran,