کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6872885 1440625 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extending labeled mobile network traffic data by three levels traffic identification fusion
ترجمه فارسی عنوان
گسترش ترافیک داده شده با برچسب های شبکه تلفن همراه با همکاری سه سطح شناسایی ترافیک
کلمات کلیدی
ترافیک شبکه تلفن همراه اطلاعات برچسب گذاری شده شناسایی ترافیک، بارگیری بسته فراگیری ماشین،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Mobile traffic classification is critically important for the decision-making of network management such as traffic shaping and traffic pricing. Labeled traffic data are the requisite of classification performance evaluation. However, existing works mostly acquired labeled traffic on a simulation environment such as individually running a specific app on mobile devices to collect its traffic. This way is slow and not scalable. This paper devises a scheme to automatically link the ground truth to mobile traffic. A set of labeled traffic data are firstly collected by our previously presented mobilegt (a system to collect mobile traffic and build the ground truth) on the monitored mobile devices. But these traffic are limited to the monitored nodes. Therefore, we present a method named ELD (Extending Labeled Data) to identify the label of newly unknown mobile traffic, so as to extend the labeled mobile traffic data. ELD proceeds traffic identification into packet header, packet payload and flow statistic levels. The three levels' traffic identification tasks are implemented by ServerTag, payload distribution inspection and Random Forest respectively. ELD is able to identify the mobile traffic with encrypted payload. The cross validation results show that ELD achieves 99% flow accuracy and 95.4% byte accuracy on average when the flow and byte completeness are respectively 86.5% and 65.5%. The results also prove that ELD outperforms existing works, nDPI and Libprotoident, on labeling mobile network traffic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 88, November 2018, Pages 453-466
نویسندگان
, , ,