کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6872890 | 1440625 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mining of productive periodic-frequent patterns for IoT data analytics
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Healthcare applications in Internet of Things (IoT) systems have been increasingly researched because they facilitate remote monitoring of patients. Though IoT may create data consisting of much useful information, finding meaningful patterns in huge amounts of IoT data is a challenge. In this paper, we propose a new type of behavioral pattern called productive periodic-frequent sensor patterns (PPFSP). PPFSP can find a correlation among a set of temporally frequent sensors patterns which can reveal interesting knowledge from the monitored data. We also present two approaches to discover PPFSP; a parallel method using a compact productive pattern sensor tree (PPSD-Tree) and Map-reduced PPFSP-H mining algorithm on Hadoop to facilitate PPFSP mining on large data. Results show that our methods are both more time and memory efficient in finding PPFSP than the existing algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 88, November 2018, Pages 512-523
Journal: Future Generation Computer Systems - Volume 88, November 2018, Pages 512-523
نویسندگان
Walaa N. Ismail, Mohammad Mehedi Hassan, Hessah A. Alsalamah,