کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6873189 1440631 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation of privacy risk through centrality metrics
ترجمه فارسی عنوان
برآورد خطر حریم خصوصی از طریق معیارهای مرکزی
کلمات کلیدی
حریم خصوصی، شبکه های اجتماعی، به اشتراک گذاری اطلاعات،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Users are not often aware of privacy risks and disclose information in online social networks. They do not consider the audience that will have access to it or the risk that the information continues to spread and may reach an unexpected audience. Moreover, not all users have the same perception of risk. To overcome these issues, we propose a Privacy Risk Score (PRS) that: (1) estimates the reachability of an user's sharing action based on the distance between the user and the potential audience; (2) is described in levels to adjust to the risk perception of individuals; (3) does not require the explicit interaction of individuals since it considers information flows; and (4) can be approximated by centrality metrics for scenarios where there is no access to data about information flows. In this case, if there is access to the network structure, the results show that global metrics such as closeness have a high degree of correlation with PRS. Otherwise, local and social centrality metrics based on ego-networks provide a suitable approximation to PRS. The results in real social networks confirm that local and social centrality metrics based on degree perform well in estimating the privacy risk of users.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 82, May 2018, Pages 63-76
نویسندگان
, , , ,