کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6873465 685917 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real-time event detection for online behavioral analysis of big social data
ترجمه فارسی عنوان
تشخیص رویداد زمان واقعی برای تجزیه و تحلیل رفتار آنلاین از داده های اجتماعی بزرگ
کلمات کلیدی
â؟ تشخیص رویداد، تشخیص رویداد زمان واقعی، تجزیه و تحلیل شبکه شبکه،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Social networking services are becoming increasingly popular during the daily lives of Internet citizens, especially since the advent of smart mobile devices with integrated utility modules such as 4G/WIFI connectivity, global positioning services, cameras, and heart beat sensors. Many devices are available for sharing information at any time, which can be listed by posting a photo, sharing a status, or narrating an event. The behavior of users means that the flow of data (or a social data stream) has real-time characteristics, which actually comprise notifications about your friends' posts after a short delay for diffusion over the network. The data stream contains news pieces related to real social facts as well as unfocused information. In addition, important information (or events) attracts more public attention, which is demonstrated by the number of relevant messages or communication interactions between people interested in specific topics. From a technical perspective, the characteristics of data in the aforementioned scenario provide us with an opportunity to construct a model that can automatically determine the occurrence of events based on a social data stream. In this study, we propose an approach to solve the problem of early event identification, which requires appropriate approaches for processing incoming data in terms of the processing performance and number of data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 66, January 2017, Pages 137-145
نویسندگان
, ,