کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6873479 | 685917 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
iDoctor: Personalized and professionalized medical recommendations based on hybrid matrix factorization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Nowadays, crowd-sourced review websites provide decision support for various aspects of daily life, including shopping, local services, healthcare, etc. However, one of the most important challenges for existing healthcare review websites is the lack of personalized and professionalized guidelines for users to choose medical services. In this paper, we develop a novel healthcare recommendation system called iDoctor, which is based on hybrid matrix factorization methods. iDoctor differs from previous work in the following aspects: (1) emotional offset of user reviews can be unveiled by sentiment analysis and be utilized to revise original user ratings; (2) user preference and doctor feature are extracted by Latent Dirichlet Allocation and incorporated into conventional matrix factorization. We compare iDoctor with previous healthcare recommendation methods using real datasets. The experimental results show that iDoctor provides a higher predication rating and increases the accuracy of healthcare recommendation significantly.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 66, January 2017, Pages 30-35
Journal: Future Generation Computer Systems - Volume 66, January 2017, Pages 30-35
نویسندگان
Yin Zhang, Min Chen, Dijiang Huang, Di Wu, Yong Li,