کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6874192 1441028 2018 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gradient/Hessian-enhanced least square support vector regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Gradient/Hessian-enhanced least square support vector regression
چکیده انگلیسی
In least square support vector regression (LSSVR), Vapnik's original SVR formulation has been modified by using a cost function which corresponds to a form of ridge regression rather than ε-insensitive loss function. As a result, nonlinear function estimation is done by solving linear set of equations instead of solving a time-consuming quadratic programming problem. When the gradient/Hessians in samples can be obtained cheaply, it should be considered in the construction of metamodels. In this paper, the gradient/Hessian-enhanced LSSVR (G/HELSSVR) is developed through incorporating gradient/Hessian information into the traditional LSSVR. The performance of this method is tested by analytical function fitting. The experimental results illustrate that the proposed G/HELSSVR model has a great advantages over the traditional LSSVR and gradient-enhanced LSSVR (GELSSVR).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing Letters - Volume 134, June 2018, Pages 1-8
نویسندگان
, ,