کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6874477 | 1441162 | 2017 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Opposition based Laplacian Ant Lion Optimizer
ترجمه فارسی عنوان
مخالفان بر پایه لاپلاس مورچه شیرین بهینه ساز
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موت لایو بهینه ساز، بهینه سازی، توابع معیار، توزیع لاپلاس، یادگیری مبتنی بر اپوزیسیون،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Performance of any nature inspired optimization algorithm is subject to appropriate combination of operators used for exploration and exploitation. The lack of this combination inclines an algorithm towards premature convergence, entrapment of local optima and inability to reach global optima. This paper presents a novel algorithm called opposition based Laplacian antlion optimizer (OB-L-ALO) to accelerate the performance of the original ALO. For achieving acceleration, exploration is to be enhanced. Two strategies are used for this purpose: Firstly, Laplace distribution is used in random walk of ALO instead of uniform distribution which ensures exploration of more search area than the original random walk of ALO. Secondly, Opposition Based Learning model which ensures the exploration of original as well as opposite candidate solutions in the search space at the same time to estimate the better candidate solutions while evolution process is in progress. A comprehensive set of 27 benchmark problems including wide range of different characteristics and different dimensions have been employed for verification of results. Also the influence of Laplace distribution random numbers and opposition based new population generation during evolution process has been analysed by behaviour of trajectories, convergence rate, data distribution of objective function values using boxplot and average fitness improvement for certain test suit. The proposed OB-L-ALO is also employed to the set of unconstrained engineering design problems of Gear Train Design and Optimal Capacity of Gas Production Facilities, showing diversity in solving the real world optimization problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 23, November 2017, Pages 71-90
Journal: Journal of Computational Science - Volume 23, November 2017, Pages 71-90
نویسندگان
Shail Kumar Dinkar, Kusum Deep,