| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6874595 | 687532 | 2015 | 5 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Model selection for Discriminative Restricted Boltzmann Machines through meta-heuristic techniques
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													نظریه محاسباتی و ریاضیات
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												Discriminative learning of Restricted Boltzmann Machines has been recently introduced as an alternative to provide a self-contained approach for both unsupervised feature learning and classification purposes. However, one of the main problems faced by researchers interested in such approach concerns with a proper selection of its parameters, which play an important role in its final performance. In this paper, we introduced some meta-heuristic techniques for this purpose, as well as we showed they can be more accurate than a random search, which is commonly used technique in several works.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 9, July 2015, Pages 14-18
											Journal: Journal of Computational Science - Volume 9, July 2015, Pages 14-18
نویسندگان
												João P. Papa, Gustavo H. Rosa, Aparecido N. Marana, Walter Scheirer, David D. Cox,