کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6876431 1442465 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-driven simulation for fast prediction of pull-up process in bottom-up stereo-lithography
ترجمه فارسی عنوان
شبیه سازی داده شده برای پیش بینی سریع روند فرآیند برش در لایتوگرافی استریو پایین به بالا
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی
Cohesive finite element simulation is a mechanics-based computational approach that can be used to model the pull-up process in bottom-up stereo-lithography (SLA) system to significantly increase the reliability and through-put of the bottom-up SLA process. This modeling relates the pull-up velocity and separation of the fabricated part during the pull-up process. However, finite element (FE) simulation of the pull-up process for the individual part is computationally very expensive, time-consuming, and not amenable to online monitoring. This paper outlines a computationally efficient data-driven scheme to predict the separation stress distribution in bottom-up SLA process. The proposed scheme relies on 2D shape context descriptor, neural network (NN), and a limited number of offline FE simulations. Towards this end, FE models and results for the cross-section of n-fold symmetric shapes form our databases. The 2D shape context descriptor represents different shapes through log-polar histograms in our database. A backpropagation (BP) neural network is trained using the log-polar histograms of the geometric shapes as inputs and the FE simulated stress distributions as outputs. The trained NN can then be used to predict the separation stress distribution of a new shape. The results demonstrate that the proposed data-driven method can drastically reduce computational costs and apply to any general databases. The comparison between the predicted results by the data-driven approach and the simulated FE results on new shapes verify the validity of the proposed method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer-Aided Design - Volume 99, June 2018, Pages 29-42
نویسندگان
, , , ,