کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6876560 690949 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
ℓ1-Regression based subdivision schemes for noisy data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
ℓ1-Regression based subdivision schemes for noisy data
چکیده انگلیسی
Fitting curve and surface by least-regression is quite common in many scientific fields. It, however cannot properly handle noisy data with impulsive noises and outliers. In this article, we study ℓ1-regression and its associated reweighted least squares for data restoration. Unlike most existing work, we propose the ℓ1-regression based subdivision schemes to handle this problem. In addition, we propose fast numerical optimization method: dynamic iterative reweighted least squares to solve this problem, which has closed form solution for each iteration. The most advantage of the proposed method is that it removes noises and outliers without any prior information about the input data. It also extends the least square regression based subdivision schemes from the fitting of a curve to the set of observations in 2-dimensional space to a p-dimensional hyperplane to a set of point observations in (p+1)-dimensional space. Wide-ranging experiments have been carried out to check the usability and practicality of this new framework.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer-Aided Design - Volume 58, January 2015, Pages 189-199
نویسندگان
, , , ,