کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6879005 1443107 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees
چکیده انگلیسی
This contribution investigates the nonlinear dynamics of a model of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight. The investigations show that the proposed HNNs model possesses three equilibrium points (the origin and two nonzero equilibrium points) which are always unstable for the set of synaptic weights matrix used to analyze the equilibria stability. Numerical simulations, carried out in terms of bifurcation diagrams, Lyapunov exponents graph, phase portraits and frequency spectra, are used to highlight the rich and complex phenomena exhibited by the model. These rich nonlinear dynamic behaviors include period doubling bifurcation, chaos, periodic window, antimonotonicity (i.e. concurrent creation and annihilation of periodic orbits) and coexistence of asymmetric self-excited attractors (e.g. coexistence of two and three disconnected periodic and chaotic attractors). Finally, PSpice simulations are used to confirm the results of the theoretical analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AEU - International Journal of Electronics and Communications - Volume 93, September 2018, Pages 242-252
نویسندگان
, ,