کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6879781 | 1443130 | 2016 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
System identification using Hammerstein model optimized with differential evolution algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper aims to improve Hammerstein model for system identification area. Hammerstein model block structure is formed by cascade of linear and nonlinear parts. In literature, memoryless polynomial nonlinear (MPN) model for nonlinear part and finite impulse response (FIR) model or infinite impulse response (IIR) model for linear part are mostly preferred for Hammerstein models. In this study, a Hammerstein model is presented which is obtained by cascade form of a nonlinear second order volterra (SOV) and a linear FIR model. In addition, proposed Hammerstein model is optimized with differential evolution algorithm (DEA). In simulations, different types of systems are identified by proposed Hammerstein model. Also, performance of the proposed model is compared with different model performances. In conclusion it can be said that the main benefit of this study is that simulation results reveal the effectiveness and robustness of the proposed model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: AEU - International Journal of Electronics and Communications - Volume 70, Issue 12, December 2016, Pages 1667-1675
Journal: AEU - International Journal of Electronics and Communications - Volume 70, Issue 12, December 2016, Pages 1667-1675
نویسندگان
Selcuk Mete, Saban Ozer, Hasan Zorlu,