کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6883346 | 1444171 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Network traffic classification based on transfer learning
ترجمه فارسی عنوان
طبقه بندی ترافیک شبکه بر مبنای یادگیری انتقال
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی ترافیک، فراگیری ماشین، انتقال یادگیری، انطباق دامنه، حداکثر مدل آنتروپی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Machine learning models used in traffic classification make the assumption that the training data and test data have independent identical distributions. However, this assumption might be violated in practical traffic classification due to changes of traffic features. The models trained by existing data will be ineffective in classifying new traffic. A transfer learning model without making the above assumption is proposed in the present study. The maximum entropy model (Maxent) was adopted as the base classifier in the transfer learning model. To examine the efficacy of the proposed method, the traffic dataset collected at the University of Cambridge was used in the condition that the training and test dataset were not identical. Experimental results showed that good classification performance was obtained based on the transfer learning model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 69, July 2018, Pages 920-927
Journal: Computers & Electrical Engineering - Volume 69, July 2018, Pages 920-927
نویسندگان
Guanglu Sun, Lili Liang, Teng Chen, Feng Xiao, Fei Lang,