کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6883749 695512 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparative study of feature ranking techniques for epileptic seizure detection using wavelet transform
ترجمه فارسی عنوان
مطالعه تطبیقی ​​تکنیک های رتبه بندی ویژگی تشخیص تشنج صرعی با استفاده از تبدیل موجک
کلمات کلیدی
الکتروانسفالوگرام، تکنیک های رتبه بندی صرع، ماشین بردار حداقل مربع پشتیبانی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
In this paper, an attempt is made to obtain optimal wavelet function and wavelet based Electroencephalograph (EEG) features for detection of epilepsy using appropriate feature ranking techniques. The EEG data includes normal, pre-ictal and ictal EEG signals. Initially, signals are decomposed using 16 discrete wavelets and the best basis wavelet is selected using Maximum Energy to Permutation Entropy ratio criterion. A range of statistical, fractal and entropy based features are calculated from selected wavelet coefficients. The performance of three different feature ranking techniques i.e. Fisher Score, ReliefF and Information Gain is investigated on computed features. Classification of the ranked features is performed by machine learning technique Least Square-Support Vector Machine. Features ranked through Fisher Score ranking technique show high discrimination ability and classified with high classification accuracy. Classification results ensure the suitability of proposed best basis wavelet based feature extraction methodology and Fisher Score ranking technique in epilepsy detection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Electrical Engineering - Volume 53, July 2016, Pages 163-176
نویسندگان
, , ,