کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6884083 | 1444212 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Malware classification using self organising feature maps and machine activity data
ترجمه فارسی عنوان
طبقه بندی تروجان با استفاده از نقشه های ویژگی خود سازماندهی و داده های فعالیت های دستگاه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بد افزار، فراگیری ماشین، خود سازماندهی نقشه ها، تشخیص نفوذ، علم اطلاعات، مرکز عملیات امنیتی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
In this article we use machine activity metrics to automatically distinguish between malicious and trusted portable executable software samples. The motivation stems from the growth of cyber attacks using techniques that have been employed to surreptitiously deploy Advanced Persistent Threats (APTs). APTs are becoming more sophisticated and able to obfuscate much of their identifiable features through encryption, custom code bases and in-memory execution. Our hypothesis is that we can produce a high degree of accuracy in distinguishing malicious from trusted samples using Machine Learning with features derived from the inescapable footprint left behind on a computer system during execution. This includes CPU, RAM, Swap use and network traffic at a count level of bytes and packets. These features are continuous and allow us to be more flexible with the classification of samples than discrete features such as API calls (which can also be obfuscated) that form the main feature of the extant literature. We use these continuous data and develop a novel classification method using Self Organizing Feature Maps to reduce over fitting during training through the ability to create unsupervised clusters of similar “behaviour” that are subsequently used as features for classification, rather than using the raw data. We compare our method to a set of machine classification methods that have been applied in previous research and demonstrate an increase of between 7.24% and 25.68% in classification accuracy using our method and an unseen dataset over the range of other machine classification methods that have been applied in previous research.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Security - Volume 73, March 2018, Pages 399-410
Journal: Computers & Security - Volume 73, March 2018, Pages 399-410
نویسندگان
Pete Burnap, Richard French, Frederick Turner, Kevin Jones,