کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6885251 | 1444503 | 2018 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The next 700 CPU power models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Software power estimation of CPUs is a central concern for energy efficiency and resource management in data centers. Over the last few years, a dozen of ad hoc power models have been proposed to cope with the wide diversity and the growing complexity of modern CPU architectures. However, most of these CPU power models rely on a thorough expertise of the targeted architectures, thus leading to the design of hardware-specific solutions that can hardly be ported beyond the initial settings. In this article, we rather propose a novel toolkit that uses a configurable/interchangeable learning technique to automatically learn the power model of a CPU, independently of the features and the complexity it exhibits. In particular, our learning approach automatically explores the space of hardware performance counters made available by a given CPU to isolate the ones that are best correlated to the power consumption of the host, and then infers a power model from the selected counters. Based on a middleware toolkit devoted to the implementation of software-defined power meters, we implement the proposed approach to generate CPU power models for a wide diversity of CPU architectures (including Intel, ARM, and AMD processors), and using a large variety of both CPU and memory-intensive workloads. We show that the CPU power models generated by our middleware toolkit estimate the power consumption of the whole CPU or individual processes with an accuracy of 98.5% on average, thus competing with the state-of-the-art power models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems and Software - Volume 144, October 2018, Pages 382-396
Journal: Journal of Systems and Software - Volume 144, October 2018, Pages 382-396
نویسندگان
Maxime Colmant, Romain Rouvoy, Mascha Kurpicz, Anita Sobe, Pascal Felber, Lionel Seinturier,