کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6885395 | 1444510 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hora: Architecture-aware online failure prediction
ترجمه فارسی عنوان
هورا: پیش بینی شکست آنلاین معماری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
پیش بینی شکست آنلاین، قابلیت اطمینان، سیستم های نرم افزاری مبتنی بر کامپوننت،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
Complex software systems experience failures at runtime even though a lot of effort is put into the development and operation. Reactive approaches detect these failures after they have occurred and already caused serious consequences. In order to execute proactive actions, the goal of online failure prediction is to detect these failures in advance by monitoring the quality of service or the system events. Current failure prediction approaches look at the system or individual components as a monolith without considering the architecture of the system. They disregard the fact that the failure in one component can propagate through the system and cause problems in other components. In this paper, we propose a hierarchical online failure prediction approach, called Hora, which combines component failure predictors with architectural knowledge. The failure propagation is modeled using Bayesian networks which incorporate both prediction results and component dependencies extracted from the architectural models. Our approach is evaluated using Netflix's server-side distributed RSS reader application to predict failures caused by three representative types of faults: memory leak, system overload, and sudden node crash. We compare Hora to a monolithic approach and the results show that our approach can improve the area under the ROC curve by 9.9%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Systems and Software - Volume 137, March 2018, Pages 669-685
Journal: Journal of Systems and Software - Volume 137, March 2018, Pages 669-685
نویسندگان
Teerat Pitakrat, DuÅ¡an OkanoviÄ, André van Hoorn, Lars Grunske,