کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6885872 | 1444582 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Low-power perceptron model based ECG processor for premature ventricular contraction detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes an electrocardiogram (ECG) processor for premature ventricular contraction (PVC) detection in wearable monitoring. A novel feature called QRS areas ratio (QAR) is extracted from wavelet transform coefficients which can efficiently enhance accuracy of PVC beat classification. This feature along with other two beat interval features is introduced to a single neuron perceptron model based classifier. And the classifier achieves ultra-low complexity by linear processing and reduces power consumption by eliminating memory overhead. Finally, the proposed processor exhibits an average sensitivity of 98.7% and specificity of 98.9% in testing of MIT-BIH arrhythmia database. Implemented in 40â¯nm CMOS technology, it achieves 127 nW of power consumption at 0.5â¯V supply voltage.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microprocessors and Microsystems - Volume 59, June 2018, Pages 29-36
Journal: Microprocessors and Microsystems - Volume 59, June 2018, Pages 29-36
نویسندگان
Zhijian Chen, Huanzhang Xu, Jiahui Luo, Taotao Zhu, Jianyi Meng,