کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6890273 | 1445164 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Entropy based classifier for cross-domain opinion mining
ترجمه فارسی عنوان
طبقه بندی مبتنی بر آنتروپی برای معاینه متقابل دامنه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
داده کاوی، نظر معادن، کشف دانش، سیستم های خبره، سیستم های اطلاعاتی، فراگیری ماشین،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
In recent years, the growth of social network has increased the interest of people in analyzing reviews and opinions for products before they buy them. Consequently, this has given rise to the domain adaptation as a prominent area of research in sentiment analysis. A classifier trained from one domain often gives poor results on data from another domain. Expression of sentiment is different in every domain. The labeling cost of each domain separately is very high as well as time consuming. Therefore, this study has proposed an approach that extracts and classifies opinion words from one domain called source domain and predicts opinion words of another domain called target domain using a semi-supervised approach, which combines modified maximum entropy and bipartite graph clustering. A comparison of opinion classification on reviews on four different product domains is presented. The results demonstrate that the proposed method performs relatively well in comparison to the other methods. Comparison of SentiWordNet of domain-specific and domain-independent words reveals that on an average 72.6% and 88.4% words, respectively, are correctly classified.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Computing and Informatics - Volume 14, Issue 1, January 2018, Pages 55-64
Journal: Applied Computing and Informatics - Volume 14, Issue 1, January 2018, Pages 55-64
نویسندگان
Jyoti S. Deshmukh, Amiya Kumar Tripathy,