کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6897620 1446032 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A cosine maximization method for the priority vector derivation in AHP
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
A cosine maximization method for the priority vector derivation in AHP
چکیده انگلیسی
The derivation of a priority vector from a pair-wise comparison matrix (PCM) is an important issue in the Analytic Hierarchy Process (AHP). The existing methods for the priority vector derivation from PCM include eigenvector method (EV), weighted least squares method (WLS), additive normalization method (AN), logarithmic least squares method (LLS), etc. The derived priority vector should be as similar to each column vector of the PCM as possible if a pair-wise comparison matrix (PCM) is not perfectly consistent. Therefore, a cosine maximization method (CM) based on similarity measure is proposed, which maximizes the sum of the cosine of the angle between the priority vector and each column vector of a PCM. An optimization model for the CM is proposed to derive the reliable priority vector. Using three numerical examples, the CM is compared with the other prioritization methods based on two performance evaluation criteria: Euclidean distance and minimum violation. The results show that the CM is flexible and efficient.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 235, Issue 1, 16 May 2014, Pages 225-232
نویسندگان
, ,