کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6901613 1446494 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Multi-model Approach in Developing an Intelligent Assistant for Diagnosis Recommendation in Clinical Health Systems
ترجمه فارسی عنوان
رویکرد چند مدل در ایجاد یک دستیار هوشمند برای توصیف تشخیص در سیستم های بهداشتی بالینی
کلمات کلیدی
شبکه های عصبی مصنوعی، دستیار هوشمند تشخیص پزشکی، سیستم های هوشمند سلامت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی
Clinical health information systems capture massive amounts of unstructured data from various health and medical facilities. This study utilizes unstructured patient clinical text data to develop an intelligent assistant that can identify possible related diagnoses based on a given text input. The approach applies a one-vs-rest binary classification technique wherein given an input text data, it is identified whether it can be positively or negatively classified for a given diagnosis. Multi-layer Feed-Forward Neural Network models were developed for each individual diagnosis case. The task of the intelligent assistant is to iterate over all the different models and return those that output a positive diagnosis. To validate the performance of the models, the performance metrics were compared against Naive Bayes, Decision Trees, and K-Nearest Neighbor. The results show that the neural network learner provided better performance scores in both accuracy and area under the curve metric scores. Further, testing on multiple diagnoses also shows that the methodology for developing the diagnosis models can be replicated for development of models for other diseases as well.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 121, 2017, Pages 534-541
نویسندگان
, ,