کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6902038 | 1446498 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
AraSenTi-Tweet: A Corpus for Arabic Sentiment Analysis of Saudi Tweets
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Arabic Sentiment Analysis is an active research area these days. However, the Arabic language still lacks sufficient language resources to enable the tasks of sentiment analysis. In this paper, we present the details of collecting and constructing a large dataset of Arabic tweets. The techniques used in cleaning and pre-processing the collected dataset are explained. A corpus of Arabic tweets annotated for sentiment analysis was extracted from this dataset. The corpus consists mainly of tweets written in Modern Standard Arabic and the Saudi dialect. The corpus was manually annotated for sentiment. The annotation process is explained in detail and the challenges during the annotation are highlighted. The corpus contains 17,573 tweets labelled with four labels for sentiment: positive, negative, neutral and mixed. Baseline experiments were conducted to provide benchmark results for future work.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 117, 2017, Pages 63-72
Journal: Procedia Computer Science - Volume 117, 2017, Pages 63-72
نویسندگان
Nora Al-Twairesh, Hend Al-Khalifa, AbdulMalik Al-Salman, Yousef Al-Ohali,