کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6902213 1446500 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Comparative Performance Evaluation of Supervised Feature Selection Algorithms on Microarray Datasets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
A Comparative Performance Evaluation of Supervised Feature Selection Algorithms on Microarray Datasets
چکیده انگلیسی
The focus of this research paper is to compare the different filter, wrapper and fuzzy rough set based feature selection methods based on three parameters namely execution time, number of features selected in the reduced subset and classifier accuracy. The results are analyzed using the different feature selection methods on cancer microarray gene expression datasets. This research work finds KNN classifier to produce higher classifier accuracy compared to traditional classifiers available in literature. Also fuzzy rough set based feature selection approach is computationally faster and produces lesser number of genes in the reduced subset compared to correlation based filter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 115, 2017, Pages 209-217
نویسندگان
, , ,