کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6902226 | 1446500 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Comprehensible Predictive System Model using Parameter less Fast K-Means (EPFK-Means) for web usage data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Predictive modeling approaches provide a way to streamline operational business processes. The model proposed here consists of two major steps, namely, preprocessing and prediction. We suggest a clustering method to cluster pages in a session with respect to the number of visits. Here, the conventional K-Means algorithm is modified in three manners. The first is to automatically find K (number of clusters) value using ensemble method. The second is to automatically identify initial centroids. The third is to propose method that can reduce the number of distance calculations performed in order to reduce its complexity. This clustering algorithm is combined with longest common sequence algorithm to identify the future needs of the user. Experimental results prove that the inclusion of clustering algorithm improves the prediction performance and the prediction process as against longest common sequence algorithm and conventional K-Means algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Computer Science - Volume 115, 2017, Pages 243-250
Journal: Procedia Computer Science - Volume 115, 2017, Pages 243-250
نویسندگان
Sunitha Cheriyan, Jothish Chembath,