کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6902778 | 1446648 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A reinforcement learning methodology for a human resource planning problem considering knowledge-based promotion
ترجمه فارسی عنوان
یک روش یادگیری تقویت برای یک مشکل برنامه ریزی منابع انسانی با توجه به ارتقاء مبتنی بر دانش
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تقویت یادگیری، کنترل موجودی تولید، برنامه ریزی منابع انسانی، برنامه ریزی پویا تصادفی، دانش فشرده،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
This paper addresses a combined problem of human resource planning (HRP) and production-inventory control for a high-tech industry, wherein the human resource plays a critical role. The main characteristics of this resource are the levels of “knowledge” and the learning process. The learning occurs during the production process in which a worker can promote to the upper knowledge level. Workers in upper levels have more productivity in the production. The objective is to maximize the expected profit by deciding on the optimal numbers of workers in various knowledge levels to fulfill both production and training requirement. As taking an action affects next periods' decisions, the main problem is to find the optimal hiring policy of non-skilled workers in long-time horizon. Thus, we develop a reinforcement learning (RL) model to obtain the optimal decision for hiring workers under the demand uncertainty. The proposed interval-based policy of our RL model, in which for each state there are multiple choices, makes it more flexible. We also embed some managerial issues such as layoff and overtime-working hours into the model. To evaluate the proposed methodology, stochastic dynamic programming (SDP) and a conservative method implemented in a real case study are used. We study all these methods in terms of four criteria: average obtained profit, average obtained cost, the number of new-hired workers, and the standard deviation of hiring policies. The numerical results confirm that our developed method end up with satisfactory results compared to two other approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Simulation Modelling Practice and Theory - Volume 79, December 2017, Pages 87-99
Journal: Simulation Modelling Practice and Theory - Volume 79, December 2017, Pages 87-99
نویسندگان
Amir-Mohsen Karimi-Majd, Masoud Mahootchi, Amir Zakery,