کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6902986 | 1446733 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction assisted runtime based energy tuning mechanism for HPC applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Performance tuning has become a crucial step for large-scale HPC applications, including HPC based Cloud applications. A need for an energy-aware autotuning solution has recently widened research thrusts among energy conscious scalable application developers. There exist a few standalone energy reduction approaches such as reducing MPI wait times, diligently selecting CPU frequencies, efficiently mapping workloads to CPUs, and so forth for HPC applications. Implementing energy-aware autotuning mechanisms for HPC applications, however, might require multiple executions if exhaustively tested. This paper proposes a prediction assisted energy tuning mechanism named Random Forest Modeling based Compiler Optimization Switch Selection mechanism (RFM-COSS) for HPC applications. RFM-COSS was implemented using RFM algorithm and its variants, namely RFM-SRC and RFM-Ranger. The training datasets of RFM-COSS were created using DiscretePSO algorithm for a few candidate benchmarks such as hpcc, MPI-Matrix, and Jacobi. The experimental results of the proposed RFM-COSS prediction mechanism achieved 17.7 to 88.39 percentage points of energy efficiencies for HPC applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Sustainable Computing: Informatics and Systems - Volume 19, September 2018, Pages 43-51
Journal: Sustainable Computing: Informatics and Systems - Volume 19, September 2018, Pages 43-51
نویسندگان
Shajulin Benedict,