کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6915723 | 1447405 | 2018 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The self-consistent clustering analysis (SCA) recently proposed by Liu et al. [1] provides an effective way of developing a microstructural database based on a clustering algorithm and the Lippmann-Schwinger integral equation, which enables an efficient and accurate prediction of nonlinear material response. The self-consistent clustering analysis is further generalized to consider complex loading paths through the projection of the effective stiffness tensor. In the concurrent simulation, the predicted macroscale strain localization is observed to be sensitive to the combination of microscale constituents, showing the unique capability of the SCA microstructural database for complex material simulations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 330, 1 March 2018, Pages 547-577
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 330, 1 March 2018, Pages 547-577
نویسندگان
Zeliang Liu, Mark Fleming, Wing Kam Liu,