کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6917781 | 862970 | 2013 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
BPX-preconditioning for isogeometric analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider elliptic PDEs (partial differential equations) in the framework of isogeometric analysis, i.e., we treat the physical domain by means of a B-spline or NURBS mapping which we assume to be regular. The numerical solution of the PDE is computed by means of tensor product B-splines mapped onto the physical domain. We construct additive multilevel preconditioners and show that they are asymptotically optimal, i.e., the spectral condition number of the resulting preconditioned stiffness matrix is independent of h. Together with a nested iteration scheme, this enables an iterative solution scheme of optimal linear complexity. The theoretical results are substantiated by numerical examples in two and three space dimensions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 265, 1 October 2013, Pages 63-70
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 265, 1 October 2013, Pages 63-70
نویسندگان
Annalisa Buffa, Helmut Harbrecht, Angela Kunoth, Giancarlo Sangalli,