کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6918156 | 862961 | 2013 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An enhanced aggregation method for topology optimization with local stress constraints
ترجمه فارسی عنوان
یک روش تجمعی پیشرفته برای بهینه سازی توپولوژی با محدودیت های استرس محلی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تابع جمع آوری، بهینه سازی توپولوژی، محدودیت استرس، روش متداول متداول،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
By introducing a new reduction parameter into the Kreisselmeier-Steihauser (K-S) function, this paper presents a general K-S formulation providing an approximation to the feasible region restricted by active constraints. The approximation is highly accurate even when the aggregation parameter takes a relatively small value. Numerical difficulties, such as high nonlinearity and serious violation of local constraints that may be exhibited by the original K-S function, are thus effectively alleviated. In the considered topology optimization problem, the material volume is to be minimized under local von Mises stress constraints imposed on all the finite elements. An enhanced aggregation algorithm based on the general K-S function, in conjunction with a “removal and re-generation” strategy for selecting the active constraints, is then proposed to treat the stress constraints of the optimization problem. Numerical examples are given to demonstrate the validity of the present algorithm. It is shown that the proposed method can achieve reasonable solutions with a high computational efficiency in handling large-scale stress constrained topology optimization problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 254, February 2013, Pages 31-41
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 254, February 2013, Pages 31-41
نویسندگان
Yangjun Luo, Michael Yu Wang, Zhan Kang,