کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920185 | 1447877 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Retinal blood vessel segmentation using fully convolutional network with transfer learning
ترجمه فارسی عنوان
تقسیم عروق خونی شبکیه با استفاده از شبکه کاملا متقارن با یادگیری انتقال
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تقسیم رگ های خون شبکیه، یادگیری عمیق، شبکه کاملا متقارن، انتقال یادگیری، مدل پیش آموزش دیده،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automated or computer-aided diagnosis systems. In this paper, a supervised method is presented based on a pre-trained fully convolutional network through transfer learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging. Meanwhile, additional unsupervised image post-processing techniques are applied to this proposed method so as to refine the final result. Extensive experiments have been conducted on DRIVE, STARE, CHASE_DB1 and HRF databases, and the accuracy of the cross-database test on these four databases is state-of-the-art, which also presents the high robustness of the proposed approach. This successful result has not only contributed to the area of automated retinal blood vessel segmentation but also supports the effectiveness of transfer learning when applying deep learning technique to medical imaging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computerized Medical Imaging and Graphics - Volume 68, September 2018, Pages 1-15
Journal: Computerized Medical Imaging and Graphics - Volume 68, September 2018, Pages 1-15
نویسندگان
Zhexin Jiang, Hao Zhang, Yi Wang, Seok-Bum Ko,