کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920415 | 1447920 | 2018 | 46 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study concerns the task of automatic structural heart abnormality risk detection from digital phonocardiogram (PCG) signals aiming at pediatric heart disease screening applications. Recently, various systems based on convolutional neural networks trained on time-frequency representations of segmental PCG frames have been presented that outperform systems using hand-crafted features. This study focuses on the segmentation and time-frequency representation components of the CNN-based designs. We consider the most commonly used features (MFCC and Mel-Spectrogram) used in state-of-the-art systems and a time-frequency representation influenced by domain-knowledge, namely sub-band envelopes as an alternative feature. Via tests carried on two high quality databases with a large set of possible settings, we show that sub-band envelopes are preferable to the most commonly used features and period synchronous windowing is preferable over asynchronous windowing.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 132-143
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 132-143
نویسندگان
Baris Bozkurt, Ioannis Germanakis, Yannis Stylianou,