کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920417 | 1447920 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
iAcet-Sumo: Identification of lysine acetylation and sumoylation sites in proteins by multi-class transformation methods
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we first launched an integrated approach, known as the five-step prediction method (FSPM), to solve the problem effectively by (1) using one-sided selection (OSS) to deal with imbalanced data, (2) extracting binary features from protein sequences, (3) incorporating binary relevance, classifier chains and multi-class transformation methods to simplify multi-label problems, (4) constructing different classifiers, and (5) implementing cross-validation and evaluating these classifiers. In 10-fold cross-validation, FSPM achieved an accuracy of 61.49% and an absolute-true rate of 60.17%. The results showed that FSPM is accurate and could be used as a powerful engine in multi-label systems. We also conducted a variety of statistical analyses of the predicted results to discuss the biological functions of lysine acetylation and sumoylation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 144-151
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 144-151
نویسندگان
Yingxi Yang, Hui Wang, Jun Ding, Yan Xu,