کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920420 | 1447920 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient computation of image moments for robust cough detection using smartphones
ترجمه فارسی عنوان
محاسبه موثر لحظات تصویر برای تشخیص قوی سرفه با استفاده از گوشی های هوشمند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص رویداد، تشخیص سرفه، سلامت موبایل، تئوری لحظه ای، بهینه سازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Health Monitoring apps for smartphones have the potential to improve quality of life and decrease the cost of health services. However, they have failed to live up to expectation in the context of respiratory disease. This is in part due to poor objective measurements of symptoms such as cough. Real-time cough detection using smartphones faces two main challenges namely, the necessity of dealing with noisy input signals, and the need of the algorithms to be computationally efficient, since a high battery consumption would prevent patients from using them. This paper proposes a robust and efficient smartphone-based cough detection system able to keep the phone battery consumption below 25% (16% if only the detector is considered) during 24â¯h use. The proposed system efficiently calculates local image moments over audio spectrograms to feed an optimized classifier for final cough detection. Our system achieves 88.94% sensitivity and 98.64% specificity in noisy environments with a 5500à speed-up and 4à battery saving compared to the baseline implementation. Power consumption is also reduced by a minimum factor of 6 compared to existing optimized systems in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 176-185
Journal: Computers in Biology and Medicine - Volume 100, 1 September 2018, Pages 176-185
نویسندگان
Carlos Hoyos-Barceló, Jesús Monge-Álvarez, Zeeshan Pervez, Luis M. San-José-Revuelta, Pablo Casaseca-de-la-Higuera,