کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920637 | 1447926 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Cluster based statistical feature extraction method for automatic bleeding detection in wireless capsule endoscopy video
ترجمه فارسی عنوان
روش استخراج ویژگی آماری مبتنی بر خوشه ای برای تشخیص خودکار خونریزی در ویدیو آندوسکوپی کپسول بیسیم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص خونریزی، مشخصه منطقه خونریزی، استخراج ویژگی، خوشه ناپیوسته، آندوسکوپی کپسول بیسیم،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Wireless capsule endoscopy (WCE) is capable of demonstrating the entire gastrointestinal tract at an expense of exhaustive reviewing process for detecting bleeding disorders. The main objective is to develop an automatic method for identifying the bleeding frames and zones from WCE video. Different statistical features are extracted from the overlapping spatial blocks of the preprocessed WCE image in a transformed color plane containing green to red pixel ratio. The unique idea of the proposed method is to first perform unsupervised clustering of different blocks for obtaining two clusters and then extract cluster based features (CBFs). Finally, a global feature consisting of the CBFs and differential CBF is used to detect bleeding frame via supervised classification. In order to handle continuous WCE video, a post-processing scheme is introduced utilizing the feature trends in neighboring frames. The CBF along with some morphological operations is employed to identify bleeding zones. Based on extensive experimentation on several WCE videos, it is found that the proposed method offers significantly better performance in comparison to some existing methods in terms of bleeding detection accuracy, sensitivity, specificity and precision in bleeding zone detection. It is found that the bleeding detection performance obtained by using the proposed CBF based global feature is better than the feature extracted from the non-clustered image. The proposed method can reduce the burden of physicians in investigating WCE video to detect bleeding frame and zone with a high level of accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 94, 1 March 2018, Pages 41-54
Journal: Computers in Biology and Medicine - Volume 94, 1 March 2018, Pages 41-54
نویسندگان
Tonmoy Ghosh, Shaikh Anowarul Fattah, Khan A. Wahid, Wei-Ping Zhu, M. Omair Ahmad,