کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920774 | 864470 | 2016 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assessing heart rate variability through wavelet-based statistical measures
ترجمه فارسی عنوان
ارزیابی تغییرات ضربان قلب از طریق اقدامات آماری مبتنی بر موجک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تنش قلبی، تبدیل موجک مداوم، الکتروکاردیوگرام، تئوری اطلاعات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Because of its utility in the investigation and diagnosis of clinical abnormalities, heart rate variability (HRV) has been quantified with both time and frequency analysis tools. Recently, time-frequency methods, especially wavelet transforms, have been applied to HRV. In the current study, a complementary computational approach is proposed wherein continuous wavelet transforms are applied directly to ECG signals to quantify time-varying frequency changes in the lower bands. Such variations are compared for resting and lower body negative pressure (LBNP) conditions using statistical and information-theoretic measures, and compared with standard HRV metrics. The latter confirm the expected lower variability in the LBNP condition due to sympathetic nerve activity (e.g. RMSSD: p=0.023; SDSD: p=0.023; LF/HF: p=0.018). Conversely, using the standard Morlet wavelet and a new transform based on windowed complex sinusoids, wavelet analysis of the ECG within the observed range of heart rate (0.5-1.25Â Hz) exhibits significantly higher variability, as measured by frequency band roughness (Morlet CWT: p=0.041), entropy (Morlet CWT: p=0.001), and approximate entropy (Morlet CWT: p=0.004). Consequently, this paper proposes that, when used with well-established HRV approaches, time-frequency analysis of ECG can provide additional insights into the complex phenomenon of heart rate variability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 77, 1 October 2016, Pages 222-230
Journal: Computers in Biology and Medicine - Volume 77, 1 October 2016, Pages 222-230
نویسندگان
Mark P. Wachowiak, Dean C. Hay, Michel J. Johnson,