کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6920848 864433 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised entity and relation extraction from clinical records in Italian
ترجمه فارسی عنوان
نهادهای نظارتی و استخراج رابطه از سوابق بالینی در ایتالیایی
کلمات کلیدی
یادگیری بی نظیر، خوشه بندی ارتباطی، استخراج شخصیت، استخراج اطلاعات پزشکی، کشف رابطه سازمانی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This paper proposes and discusses the use of text mining techniques for the extraction of information from clinical records written in Italian. However, as it is very difficult and expensive to obtain annotated material for languages different from English, we only consider unsupervised approaches, where no annotated training set is necessary. We therefore propose a complete system that is structured in two steps. In the first one domain entities are extracted from the clinical records by means of a metathesaurus and standard natural language processing tools. The second step attempts to discover relations between the entity pairs extracted from the whole set of clinical records. For this last step we investigate the performance of unsupervised methods such as clustering in the space of entity pairs, represented by an ad hoc feature vector. The resulting clusters are then automatically labelled by using the most significant features. The system has been tested on a fairly large data set of clinical records in Italian, investigating the variation in the performance adopting different similarity measures in the feature space. The results of our experiments show that the unsupervised approach proposed is promising and well suited for a semi-automatic labelling of the extracted relations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 72, 1 May 2016, Pages 263-275
نویسندگان
, , , ,