کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6921354 864495 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior
چکیده انگلیسی
In magnetic resonance (MR) imaging, image spatial resolution is determined by various instrumental limitations and physical considerations. This paper presents a new algorithm for producing a high-resolution version of a low-resolution MR image. The proposed method consists of two consecutive steps: (1) reconstructs a high-resolution MR image from a given low-resolution observation via solving a joint sparse representation and nonlocal similarity L1-norm minimization problem; and (2) applies a sparse derivative prior based post-processing to suppress blurring effects. Extensive experiments on simulated brain MR images and two real clinical MR image datasets validate that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both quantitative measures and visual perception.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 58, 1 March 2015, Pages 130-145
نویسندگان
, , , ,