کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6921422 864445 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy
ترجمه فارسی عنوان
یک روش تقسیم بندی خودکار ریه با استفاده از کدهای زنجیره دو طرفه برای بهبود دقت تشخیص گره
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Computer-aided detection and diagnosis (CAD) has been widely investigated to improve radiologists׳ diagnostic accuracy in detecting and characterizing lung disease, as well as to assist with the processing of increasingly sizable volumes of imaging. Lung segmentation is a requisite preprocessing step for most CAD schemes. This paper proposes a parameter-free lung segmentation algorithm with the aim of improving lung nodule detection accuracy, focusing on juxtapleural nodules. A bidirectional chain coding method combined with a support vector machine (SVM) classifier is used to selectively smooth the lung border while minimizing the over-segmentation of adjacent regions. This automated method was tested on 233 computed tomography (CT) studies from the lung imaging database consortium (LIDC), representing 403 juxtapleural nodules. The approach obtained a 92.6% re-inclusion rate. Segmentation accuracy was further validated on 10 randomly selected CT series, finding a 0.3% average over-segmentation ratio and 2.4% under-segmentation rate when compared to manually segmented reference standards done by an expert.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 57, 1 February 2015, Pages 139-149
نویسندگان
, , , ,