کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6922262 | 1448273 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring
ترجمه فارسی عنوان
رسانه های جغرافیایی اجتماعی به عنوان یک پروکسی برای داده های هیدرومتئومیکس برای برآورد جریان و بهبود نظارت بر سیل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
رسانه های اجتماعی، مدل سازی هیدرولوژیکی، برآورد جریان نظارت بر سیل،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison made with real streamflow measurements. This is a significant improvement on the respective values of 39% and 58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-warning systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 111, February 2018, Pages 148-158
Journal: Computers & Geosciences - Volume 111, February 2018, Pages 148-158
نویسندگان
Camilo Restrepo-Estrada, Sidgley Camargo de Andrade, Narumi Abe, Maria Clara Fava, Eduardo Mario Mendiondo, João Porto de Albuquerque,