کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6923062 | 865041 | 2013 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pattern forced geophysical vector field segmentation based on Clifford FFT
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Vector field segmentation is gaining increasing importance in geophysics research. Existing vector field segmentation methods usually can only handle the statistical characteristics of the original data. It is hard to integrate the patterns forced by certain geophysical phenomena. In this paper, a template matching method is firstly constructed on the foundation of the Clifford Fourier Transformation (CFT). The geometric meanings of both inner and outer components can provide more attractive information about the similarities between original vector field and template data. A composed similarity  field is constructed based on the coefficients fields.  After that, a modified spatial consistency preserving K-Means cluster algorithm is proposed. This algorithm is applied to the similarity fields to extract the template forced spatial distribution pattern. The complete algorithm for the overall processing is given and the experiments of ENSO forced global ocean surface wind segmentation are configured to test our method. The results suggest that the pattern forced segmentation can extract more latent information that cannot be directly measured from the original data. And the spatial distribution of ENSO influence on the surface wind field is clearly given in the segmentation result. All the above suggest that the method we proposed provides powerful and new thoughts and tools for geophysical vector field data analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 60, October 2013, Pages 63-69
Journal: Computers & Geosciences - Volume 60, October 2013, Pages 63-69
نویسندگان
Linwang Yuan, Zhaoyuan Yu, Wen Luo, Lin Yi, Yong Hu,