کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6923722 | 1448363 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Grapevine buds detection and localization in 3D space based on Structure from Motion and 2D image classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In viticulture, there are several applications where 3D bud detection and localization in vineyards is a necessary task susceptible to automation: measurement of sunlight exposure, autonomous pruning, bud counting, type-of-bud classification, bud geometric characterization, internode length, and bud development stage. This paper presents a workflow to achieve quality 3D localizations of grapevine buds based on well-known computer vision and machine learning algorithms when provided with images captured in natural field conditions (i.e., natural sunlight and the addition of no artificial elements), during the winter season and using a mobile phone RGB camera. Our pipeline combines the Oriented FAST and Rotated BRIEF (ORB) for keypoint detection, a Fast Local Descriptor for Dense Matching (DAISY) for describing the keypoint, and the Fast Approximate Nearest Neighbor (FLANN) technique for matching keypoints, with the Structure from Motion multi-view scheme for generating consistent 3D point clouds. Next, it uses a 2D scanning window classifier based on Bag of Features and Support Vectors Machine for classification of 3D points in the cloud. Finally, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for 3D bud localization is applied. Our approach resulted in a maximum precision of 1.0 (i.e., no false detections), a maximum recall of 0.45 (i.e. 45% of the buds detected), and a localization error within the range of 259-554 pixels (corresponding to approximately 3 bud diameters, or 1.5â¯cm) when evaluated over the whole range of user-given parameters of workflow components.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Industry - Volume 99, August 2018, Pages 303-312
Journal: Computers in Industry - Volume 99, August 2018, Pages 303-312
نویسندگان
Carlos Ariel DÃaz, Diego Sebastián Pérez, Humberto Miatello, Facundo Bromberg,