کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6923728 | 1448363 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ABC algorithm based optimization of 1-D hidden Markov model for hand gesture recognition applications
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hand gestures are extensively used to communicate based on non-verbal interaction with computers. This mode of communication is made possible by implementing machine learning algorithms for pattern recognition. A stochastic mathematical approach is used to interpret the hand gesture pattern for classification. In this work, a predominant method is used by 1-D hidden Markov model (1-D HMM) for classifying the patterns and to measure its performance. During training phase, 1-D HMM is used to predict its next state sequence of hand gestures using dynamic programming methods such as Baum-Welch algorithm and Viterbi algorithm. However, dynamic programming based prediction methodologies are complex. To enhance the performance of 1-D HMM model, its parameter and observation state sequence must be optimized using bio-inspired heuristic approaches. In this work, Artificial Bee Colony (ABC) algorithm is used for optimization. A hybrid 1-D HMM model with ABC optimization has been proposed which has yielded a better performance metrics like recognition rate and error rate for Cambridge hand gesture dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Industry - Volume 99, August 2018, Pages 313-323
Journal: Computers in Industry - Volume 99, August 2018, Pages 313-323
نویسندگان
K. Martin Sagayam, D. Jude Hemanth,