کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6925596 866720 2016 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Least-squares finite strain hexahedral element/constitutive coupling based on parametrized configurations and the Löwdin frame
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Least-squares finite strain hexahedral element/constitutive coupling based on parametrized configurations and the Löwdin frame
چکیده انگلیسی
Two novelties are introduced: (i) a finite-strain semi-implicit integration algorithm compatible with current element technologies and (ii) the application to assumed-strain hexahedra. The Löwdin algorithm is adopted to obtain evolving frames applicable to finite strain anisotropy and a weighted least-squares algorithm is used to determine the mixed strain. Löwdin frames are very convenient to model anisotropic materials. Weighted least-squares circumvent the use of internal degrees-of-freedom. Heterogeneity of element technologies introduce apparently incompatible constitutive requirements. Assumed-strain and enhanced strain elements can be either formulated in terms of the deformation gradient or the Green-Lagrange strain, many of the high-performance shell formulations are corotational and constitutive constraints (such as incompressibility, plane stress and zero normal stress in shells) also depend on specific element formulations. We propose a unified integration algorithm compatible with possibly all element technologies. To assess its validity, a least-squares based hexahedral element is implemented and tested in depth. Basic linear problems as well as 5 finite-strain examples are inspected for correctness and competitive accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Elements in Analysis and Design - Volume 108, January 2016, Pages 96-109
نویسندگان
, , ,