کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6925836 1448876 2018 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Slightly-slacked dropout for improving neural network learning on FPGA
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Slightly-slacked dropout for improving neural network learning on FPGA
چکیده انگلیسی
Neural Network Learning (NNL) is compute-intensive. It often involves a dropout technique which effectively regularizes the network to avoid overfitting. As such, a hardware accelerator for dropout NNL has been proposed; however, the existing method encounters a huge transfer cost between hardware and software. This paper proposes Slightly-Slacked Dropout (SS-Dropout), a novel deterministic dropout technique to address the transfer cost while accelerating the process. Experimental results show that our SS-Dropout technique improves both the usual and dropout NNL accelerator, i.e., 1.55 times speed-up and three order-of-magnitude less transfer cost, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ICT Express - Volume 4, Issue 2, June 2018, Pages 75-80
نویسندگان
, ,