کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6925836 | 1448876 | 2018 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Slightly-slacked dropout for improving neural network learning on FPGA
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Neural Network Learning (NNL) is compute-intensive. It often involves a dropout technique which effectively regularizes the network to avoid overfitting. As such, a hardware accelerator for dropout NNL has been proposed; however, the existing method encounters a huge transfer cost between hardware and software. This paper proposes Slightly-Slacked Dropout (SS-Dropout), a novel deterministic dropout technique to address the transfer cost while accelerating the process. Experimental results show that our SS-Dropout technique improves both the usual and dropout NNL accelerator, i.e., 1.55 times speed-up and three order-of-magnitude less transfer cost, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ICT Express - Volume 4, Issue 2, June 2018, Pages 75-80
Journal: ICT Express - Volume 4, Issue 2, June 2018, Pages 75-80
نویسندگان
Sota Sawaguchi, Hiroaki Nishi,