کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6925973 1448888 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The role of location and social strength for friendship prediction in location-based social networks
ترجمه فارسی عنوان
نقش موقعیت و قدرت اجتماعی برای پیش بینی دوستی در شبکه های اجتماعی مبتنی بر مکان
کلمات کلیدی
شبکه های اجتماعی مبتنی بر مکان، پیش بینی پیوند، توصیه دوستی، تحرک بشر، رفتار کاربر،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
Recent advances in data mining and machine learning techniques are focused on exploiting location data. These advances, combined with the increased availability of location-acquisition technology, have encouraged social networking services to offer to their users different ways to share their location information. These social networks, called location-based social networks (LBSNs), have attracted millions of users and the attention of the research community. One fundamental task in the LBSN context is the friendship prediction due to its role in different applications such as recommendation systems. In the literature exists a variety of friendship prediction methods for LBSNs, but most of them give more importance to the location information of users and disregard the strength of relationships existing between these users. The contributions of this article are threefold, we: 1) carried out a comprehensive survey of methods for friendship prediction in LBSNs and proposed a taxonomy to organize the existing methods; 2) put forward a proposal of five new methods addressing gaps identified in our survey while striving to find a balance between optimizing computational resources and improving the predictive power; and 3) used a comprehensive evaluation to quantify the prediction abilities of ten current methods and our five proposals and selected the top-5 friendship prediction methods for LBSNs. We thus present a general panorama of friendship prediction task in the LBSN domain with balanced depth so as to facilitate research and real-world application design regarding this important issue.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing & Management - Volume 54, Issue 4, July 2018, Pages 475-489
نویسندگان
, , , ,