کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6927594 1449292 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probabilistic broken-stick model: A regression algorithm for irregularly sampled data with application to eGFR
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Probabilistic broken-stick model: A regression algorithm for irregularly sampled data with application to eGFR
چکیده انگلیسی
We propose a new regression algorithm known as the probabilistic broken-stick model. Using a set of locally linear line segments, i.e., the 'broken sticks', it can model any complex, non-linear function. Therefore, the model can balance both short term interpretability and long term flexibility simultaneously. It is parametric and completely generative, providing rate change as additional output. Furthermore, it can seamlessly handle any irregularly sampled clinical time series. In this paper, we show how the broken-stick model can be applied to modelling estimated glomerular filtration rate (eGFR) https://youtu.be/nS1X5OEulDY.176
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomedical Informatics - Volume 76, December 2017, Pages 69-77
نویسندگان
, , , ,