کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6928611 | 1449341 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multigrid renormalization
ترجمه فارسی عنوان
تغییر شکل چندگانه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We combine the multigrid (MG) method with state-of-the-art concepts from the variational formulation of the numerical renormalization group. The resulting MG renormalization (MGR) method is a natural generalization of the MG method for solving partial differential equations. When the solution on a grid of N points is sought, our MGR method has a computational cost scaling as O(logâ¡(N)), as opposed to O(N) for the best standard MG method. Therefore MGR can exponentially speed up standard MG computations. To illustrate our method, we develop a novel algorithm for the ground state computation of the nonlinear Schrödinger equation. Our algorithm acts variationally on tensor products and updates the tensors one after another by solving a local nonlinear optimization problem. We compare several different methods for the nonlinear tensor update and find that the Newton method is the most efficient as well as precise. The combination of MGR with our nonlinear ground state algorithm produces accurate results for the nonlinear Schrödinger equation on N=1018 grid points in three spatial dimensions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 372, 1 November 2018, Pages 587-602
Journal: Journal of Computational Physics - Volume 372, 1 November 2018, Pages 587-602
نویسندگان
Michael Lubasch, Pierre Moinier, Dieter Jaksch,